11st Hr

4.5 Graphs of Other Trigonometric Functions

Evaluate $y = \tan \theta$ for the multiples of $\frac{\pi}{4}$ in the interval $\frac{-3\pi}{2} \le \theta \le \frac{3\pi}{2}$

θ	$\frac{-3\pi}{2}$	$\frac{-5\pi}{4}$	- π	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$
Tan θ y	HODE	-1	.0	1	under.	-1	0	١	under	-1	O	1	nuget

Graph $y = \tan \theta$

one period of tano V.A to V.A (5 critical values are

points) critical values for one period.

V.A.s and

 $V.AS X = -\frac{11}{2}$

×=至 pts (一二,一1) (0,0)

(馬,1)

- 1. The period is _______
- 2. The domain is the set of real numbers except $\frac{\pi}{2}n$, where n is an odd integer.
- 3. The range is the set of real numbers. $(-\infty, \infty)$
- 4. The x intercepts are located at π n, where n is an integer.
- 5. The y intercept is (0, 0).
- 6. The vertical asymptotes are $x = \frac{\pi}{2}n$, where n is an odd integer.

Properties of the graph of $y = \csc \theta$.

- 1. The period is ______. 2. The domain is the set of real numbers except πn , where n is an integer.
- 3. The range is $(-\infty,-1] \cup [1,\infty)$. 4. There is no x intercept.
- 5. There is no y intercept. 6. The vertical asymptotes are $x = \pi n$, where n is an integer.
- 7. y = 1 when $x = \frac{\pi}{2} + 2\pi n$, where n is an integer. 8. y = -1 when $x = \frac{3\pi}{2} + 2\pi n$, where n is an integer.